23 research outputs found

    Time Discrete Geodesic Paths in the Space of Images

    Full text link
    In this paper the space of images is considered as a Riemannian manifold using the metamorphosis approach, where the underlying Riemannian metric simultaneously measures the cost of image transport and intensity variation. A robust and effective variational time discretization of geodesics paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals over a set of image intensity maps and pairwise matching deformations. For square-integrable input images the existence of discrete, connecting geodesic paths defined as minimizers of this variational problem is shown. Furthermore, Γ\Gamma-convergence of the underlying discrete path energy to the continuous path energy is proved. This includes a diffeomorphism property for the induced transport and the existence of a square-integrable weak material derivative in space and time. A spatial discretization via finite elements combined with an alternating descent scheme in the set of image intensity maps and the set of matching deformations is presented to approximate discrete geodesic paths numerically. Computational results underline the efficiency of the proposed approach and demonstrate important qualitative properties.Comment: 27 pages, 7 figure

    A Posteriori Error Control for the Binary Mumford-Shah Model

    Full text link
    The binary Mumford-Shah model is a widespread tool for image segmentation and can be considered as a basic model in shape optimization with a broad range of applications in computer vision, ranging from basic segmentation and labeling to object reconstruction. This paper presents robust a posteriori error estimates for a natural error quantity, namely the area of the non properly segmented region. To this end, a suitable strictly convex and non-constrained relaxation of the originally non-convex functional is investigated and Repin's functional approach for a posteriori error estimation is used to control the numerical error for the relaxed problem in the L2L^2-norm. In combination with a suitable cut out argument, a fully practical estimate for the area mismatch is derived. This estimate is incorporated in an adaptive meshing strategy. Two different adaptive primal-dual finite element schemes, and the most frequently used finite difference discretization are investigated and compared. Numerical experiments show qualitative and quantitative properties of the estimates and demonstrate their usefulness in practical applications.Comment: 18 pages, 7 figures, 1 tabl

    Discrete Riemannian Calculus and A Posteriori Error Control on Shape Spaces

    Get PDF
    In this thesis, a novel discrete approximation of the curvature tensor on Riemannian manifolds is derived, efficient methods to interpolate and extrapolate images in the context of the time discrete metamorphosis model are analyzed, and an a posteriori error estimator for the binary Mumford–Shah model is examined. Departing from the variational time discretization on (possibly infinite-dimensional) Riemannian manifolds originally proposed by Rumpf and Wirth, in which a consistent time discrete approximation of geodesic curves, the logarithm, the exponential map and parallel transport is analyzed, we construct the discrete curvature tensor and prove its convergence under certain smoothness assumptions. To this end, several time discrete parallel transports are applied to suitably rescaled tangent vectors, where each parallel transport is computed using Schild’s ladder. The associated convergence proof essentially relies on multiple Taylor expansions incorporating symmetry and scaling relations. In several numerical examples we validate this approach for surfaces. The by now classical flow of diffeomorphism approach allows the transport of image intensities along paths in time, which are characterized by diffeomorphisms, and the brightness of each image particle is assumed to be constant along each trajectory. As an extension, the metamorphosis model proposed by Trouvé, Younes and coworkers allows for intensity variations of the image particles along the paths, which is reflected by an additional penalization term appearing in the energy functional that quantifies the squared weak material derivative. Taking into account the aforementioned time discretization, we propose a time discrete metamorphosis model in which the associated time discrete path energy consists of the sum of squared L2-mismatch functionals of successive square-integrable image intensity functions and a regularization functional for pairwise deformations. Our main contributions are the existence proof of time discrete geodesic curves in the context of this model, which are defined as minimizers of the time discrete path energy, and the proof of the Mosco-convergence of a suitable interpolation of the time discrete to the time continuous path energy with respect to the L2-topology. Using an alternating update scheme as well as a multilinear finite element respectively cubic spline discretization for the images and deformations allows to efficiently compute time discrete geodesic curves. In several numerical examples we demonstrate that time discrete geodesics can be robustly computed for gray-scale and color images. Taking into account the time discretization of the metamorphosis model we define the discrete exponential map in the space of images, which allows image extrapolation of arbitrary length for given weakly differentiable initial images and variations. To this end, starting from a suitable reformulation of the Euler–Lagrange equations characterizing the one-step extrapolation a fixed point iteration is employed to establish the existence of critical points of the Euler–Lagrange equations provided that the initial variation is small in L2. In combination with an implicit function type argument requiring H1-closeness of the initial variation one can prove the local existence as well as the local uniqueness of the discrete exponential map. The numerical algorithm for the one-step extrapolation is based on a slightly modified fixed point iteration using a spatial Galerkin scheme to obtain the optimal deformation associated with the unknown image, from which the unknown image itself can be recovered. To prove the applicability of the proposed method we compute the extrapolated image path for real image data. A common tool to segment images and shapes into multiple regions was developed by Mumford and Shah. The starting point to derive a posteriori error estimates for the binary Mumford–Shah model, which is obtained by restricting the original model to two regions, is a uniformly convex and non-constrained relaxation of the binary model following the work by Chambolle and Berkels. In particular, minimizers of the binary model can be exactly recovered from minimizers of the relaxed model via thresholding. Then, applying duality techniques proposed by Repin and Bartels allows deriving a consistent functional a posteriori error estimate for the relaxed model. Afterwards, an a posteriori error estimate for the original binary model can be computed incorporating a suitable cut-out argument in combination with the functional error estimate. To calculate minimizers of the relaxed model on an adaptive mesh described by a quadtree structure, we employ a primal-dual as well as a purely dual algorithm. The quality of the error estimator is analyzed for different gray-scale input images
    corecore